REPORT No. 624

TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOW PAST ELLIPTIC CYLINDERS
By Carru KarLaN

SUMMARY

The method of Poggi 18 used to calculale, for perfect
Auids, the effect of compressibility upon the flow on the sur-
face of an elliptic cylinder ai zero angle of attack and with
no circulaiion. The result is expressed in a closed form
and represents a rigorous determination of the velocily of
the fluid at the surface of the obstacle insofar as the second
approximation 18 concerned.

Comparison is made with Hooker's treatment of the same
problem according to the method of Janzen and Rayleigh
and it 13 found that, for thick elliptic cylinders, the two
methods agree very well. The labor of compuiation is,
moreoter, considerably reduced by the present golution.

The third approximation to the compressible flow aboul
circular cylinders, including the terms involring the factor
(vofeo), 15 also obtained and compared with the resull giren
by Poggi. It is found that the expression given by Poggi
is incomplete with regard to the terms containing the factor

(rofea).
INTRODUCTION

The purpose of this paper is to employ the method of
Poggi (reference 1) to determine the effect of compressi-
bility on the flow about elliptic cylinders. This prob-
lem has slready been considered by Hooker (reference
2) who made use of the method of Janzen and Rayleigh
but, owing to the necessity for expanding & certain
function in the analysis, the ‘“‘thickness ratio” of the
ellipse to which his result applies is limited. The thick-
ness ratio of an ellipse is defined as the ratio b/a, where
a and b are the semimajor and semiminor axes, respec-
tively. The method of Poggi, on the other hand, not
only permits an unrestricted thickness ratio but also
reduces the labor of computation.

Briefly, it may be said that Poggi considers compres-
sible flow to be replaced by an incompressible flow due
to a distribution of sinks and sources throughout the
region of flow. The strength of the distribution in the
plane of the proﬁle is given by
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and in the plane of the circle, into which the profile is
mapped by a suitable conformal transformation, by
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where
r, 8 are the polar coordinates of a poin$ in the
plane z(=zxz-+1y) of the circle.
R, & the radius of the cirele into which the pro-
file is mapped and the angular coordinate
on this circle, respectively.
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potential of the flow.
», the magnitude of the velocity of the fluid
in the plane of the profile.
¢, the magnitude of the local velocity of
sound.
Poggl then finds that the total velocity induced, at
any point P(R, 8) of the circular boundary by the fore-
going system of sinks and sources, is:
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Poggi’s method of approximating the compressible flow
of & perfect fluid is based on the assumption that the
incompressible flow is a suitable first approximation
and that therefore the values pertaining to that flow
may be substituted for »,, r, and »* in equation (1).
The value of Av thus obtained then represents the
effect due to compressibility and is to be added to the
already known value for the velocity of the incom-
pressible flow. That is,

@)

Tt is to be noted that, in equation (1), the local
velocity of sound ¢ is not a constant but is related to
the velocity v of the fluid in the plane of the profile by
means of Bernoulli’s equation and the equation of
state of the fluid. Thus, if the adiabatic equation of
state is adopted,
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where ¢, 7, are the corresponding magnitudes in the
undisturbed stream and y=1.408 for air.
In order to facilitate the solution of equation (1),
it has been the custom to replace ¢ by ¢. This simpli-
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fication of the problem may be justified by the following
argument. It has been tacitly understood that no-
where in the fluid must the velocity of the fluid exceed
that of the local velocity of sound since the incom-
pressible flow has already been assumed to be a good
first approximation and the effect of compressibility
is merely to distort the streamlines associated with the
incompressible flow. As the maximum fluid velocity
occurs at the surface of the obstacle, there exists a
value of /e for which the maximum fluid velocity
equals that of the local velocity of sound. This
critical velocity of the fluid is obtained from equation

(8) by replacing # by ¢. Thus
) —1p2
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This value for ¢ is & Iower limit under the condition that
nowhere in the fluid is the local velocity of sound ex-
ceeded. The maximum value of ¢ occurs at the stag-
nation point »=0 and is given by
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Thus both the maximum and the least values of ¢ occur
on the obstacle and everywhere else ¢par > >Croner. It
follows from equations (4) and (5) that
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which increases very slowly as ®y/c, approaches unity.

In fact, it is seen that the upper limit for c—"‘—“”:(’L“‘"‘is

0.0973. The foregoing discussion thus shows that ¢fc,
may, as a first approximation, be taken to be unity.
Equation (1) then becomes
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THE FLOW OF A PERFECT COMPRESSIBLE FLUID
PAST AN ELLIPTIC CYLINDER
Let the ¢ plane be the plane of the ellipse and the 2
plane be the plane of the corresponding circle. Then it
is well known that the Joukowski transformation

r=et% @)

maps the circle of radius ¢ with its center at the origin
of the z plane into the line segment (—2¢, 0; 2a, 0) in
the ¢ plane. Also, the circles concentric with the circle
of radius @ are transformed into a family of confocal
ellipses with common foci at (—2a, 0) and (2e, 0). If
R(>a) denotes the radius of one of these circles, then
the semimajor and semiminor axes of the ellipse into

(a a)dxda (6) '
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: |
which it is transformed are, respectively, R+% and

3
R—-%- The thickness ratio ¢ then becomes:
. -
f= R—R !._—_—_-_o_'_’
- a_ 1+e
B+3
or
_1—t
ol= 1+¢
where
_a
=R

If w denotes the complex potential of the incom-
pressible flow in the z plane when a stream of velocity #,
impinges on a circle of radius R in the direction of the
negative z axis, then

'w=vu(z —i}g) (&)

The complex velacity in the ¢ plane is then given by

dw_dwdz
& dzdt
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or

When )\=1§ and a=%are introduced, it follows that
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Following Poggi’s procedure, the Fourier development
of v*un? will be obtained. Thus, by the use of the
expansion

L = L 2 3 ™ ; ]
1—20%N cos 20—{-114)\4_1_0.4)\4[1‘1“-/ ?;: (o)™ cos 2nb

(see appendix, sec. I),
it {follows that
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where
1 +(1—26% 0
1—o*\f

and for n=1, 2,
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3 (=PEND) (5
Also from equation (8)
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Then, inserting the expressions for #% t,, and 7y given
by equations (11) and (12) into equation (6) and making
use of the integrals

r sin (—48) odi— 0 if n=0
0 I—2X\ cos (6— 6)—[—)\’smn T |LaA*Teosndif n21
(see appendix, sec. IT)
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it follows without difficulty that
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L I(x=u+!a2,—x2n-la2,,+,)dx:| (13)

where

_
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Substituting for the a»'s from equation (11), equation
(13) takes the form

Av pl e
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Replacing A by r, for purposes of integration only, it
follows that
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I+ (01— . 1424 cos §4-o*
- 20 sin 28 log 75 ~os st et

_ﬁ[(1+¢r‘) cos 26—202]'[&,1—: Z;_i',_l?ﬁ

+2|:(1—|—a"+a") sin 5—o* sin 3{”) (14)

For 6= %, the position of maximum veloeity on the sur-
face of the elliptic eylinder,

(g _el— [ 1—g* (1—::’!)*1 L1+
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It is interesting to note that the expression for As/s,
at the surface of a circular cylinder fixed in 2 stream of
velocity #, impinging on it in the direction of the
negative z axis may be obtained from equation (14) by

allowing a(=1%) to approach zero. Thus, making use
of the expansions

1 1 | ®
(1—2¢* cos 25+ ¢%)2 (1—&)3[(1""")"['2;[(""'1)

— (n—l)a‘:lal" cos 2-n«5} (see appendix, sec. I1I)

1420 cos d+o* &
1—2q cos §+a* 422 +1 cos (2n+1)5

log
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o 202r+D
= 2n:+ 1

log ==

it follows, neglecting terms containing powers of o
higher than the second, that .

Ay p _ 4 . L
0_0_2(1 o’)<3sm8 sm36)

Lim A
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or

=45 sin 8% sin 3) (16)
This expression for Asfs, agrees with that obtained
by the methods of Janzen, Rayleigh, and Poggi (ref-
erence 3).

The effect of compressibility, i. e., Aofm, having been
found, it follows according to equatlon (2) that the
total velocn‘,y at the circular boundary in the z plane

is given by
%)  —osinst
(l‘o)w—m < s 6+ 2]

and on the elliptic profile in the { plane by

a7

] 1 [/}
(‘U_u)amnu= (1—24* cos 25+ c* )’*(E)mz, (18)
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Table I shows the comparison between the values of
(®/v9)erripee calculated according to equation (18) and
those obtained by Hooker for an ellipse of thickness
ratio =3 or ¢*=%. The values for the corresponding
incompressible flow are included. It is seen that the
results of the two methods agree very well. This agree-
ment is not unexpected since Hooker’s method is par-
ticularly applicable to thick ellipses. Consider, how-
ever, a slender ellipse, say t=¥, or ¢*=%,. Table II
shows the comparison between the exact calculations of
the present method and the results obtained according
to Hooker’s method. The disagreement is more evident
than that shown in table I for the thicker ellipse.
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FIGURE 1.—The velocity of the fiuid on the surface of an elliptio cylinder of thickness
ratio 1/10 for compressible and incompressible lows with n/cs=0.857.

Figure 1 shows the graph (v/tg)euiyss calculated accord-
ing to Poggi’s method for both the compressible and
the incompressible flows past the ellipse of thickness
ratio ¥o with vyfe,=0.857,

TABLE I..

’.éﬁ.: 0.5; thickness ratio=3%

v
(m) ellipse
&
(deg.)
Hooker's Pog‘l’s Incompres:
method method sible
1} 0 0
15 . 667 . 6583 . 7085
30 1.130 L 14810 1.1339
45 1.380 1.3%60 1 3417
60 L 513 L 5184 L 4412
75 L5768 1. 5809 14867
a0 L6807 1. 5094 1. 500¢
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TABLE II
"c—:= 0.857; thickness ratio=¥,
)
te/ ellipse
H
(deg.)
Hooker’s Poggl's Incomproes-
method method sible

0 0 0 0

§ 8783 . 6342 T4
10 . 9005 . 9385 L9500
16 . 9004 L 00%6 10307
20 1,0433 10749 1. 0008
30 1, 1080 11248 L0530
40 1,1332 1.1371 10024
50 11320 1.1338 1. 0962
] L1273 L1874 1. 0083
o] 1. 1348 1. 1304 1. 0094
8 11501 1.1403 L0
80 11582 1. 1406 1. 1000

THE PRESSURE DISTRIBUTION

According to Bernoulli’s theorem and the adiabatic
equation of state, if » and p are the pressure and density
of the fluid, then

)[R G)P

where po and p are the pressure and density, respee-
tively, in the undisturbed stream. Expanding the
right-hand side of the foregoing equation and neglecting
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F1auRE 2.—The pressure of the fluld on the surface of an elliptic cylinder of thickness

ratio 1/10 for compressible and incompressible flows with cy/cym0.857.
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terms involving powers of p higher than the first yields
P=Po_(1 P\ & _v_’.)’
1 2—(1 %g)+4<1 %z + .
blakl)

The pressure distribution is then obtained by sub-
stituting for o/, from equation (18). Table ITI shows
the pressure distribution over the surface of an ellipse
of thickness ratio 1/i0 with #,/c,=0.857, and figure 2
shows the graph of this distribution together with the
one duse to the corresponding incompressible flow.

(19)

TABLE III
v . .
t—:°-=0.857; thickness ratioc = 1/10
e
p—p1
& pcdt
i
Compressible Ib)g
a 11536 10000
5 ~6635 4T
10 168 083
15 —ous — 063
20 —. 1511 —. 1253
30 —. 215 — 1788
40 —. 257 —. 1933
50 — 9706 —.2027
0 —2 — 2003
0 —. 2818 — 2057
80 —.2538 —. 2008
Pl —.2843 —. 2100

THE ATTAINMENT OF THE LOCAL VELOCITY OF SOUND
AT THE SURFACE OF AN ELLIPTIC CYLINDER

According to equation (4) the critical velocity of the
fluid is given by
—1

(ﬂc.ru
'r+1 v+1
For an elliptic cylinder, at zero angle of attack, the

(20)

critical velocity occurs at 6=-f—,; the position of maximum

velocity on the cylinder and also in the region of flow.
Hence substituting from equation (18) for (o/¢)stpee at

=% yields & cubic equation in the variable p.
Thus, from equation (15), if

1—o, _ 1—c [(1—oB* I+t
=S~ aF 2 812
—-21_01 tan"‘a-+2:|}
then
F)r 3+4f(o')p’+l:4— L1+ ]"‘
‘)(1_[_03)2
e (21)

where y=1.408 for air.

Table IV gives the critical values of w/e, for the
entire range of thickness ratios including the limiting
cases of the straight-line segment and the circular
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profile. Figure 3 shows the critical values of v/e,(= 1/. )
plotted against the thickness ratio.
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F1GURE 8.—The critical retio s/cs s a function of the thicknesa ratio .

TABLE IV

o Thickness k2]

ratio « cr!fi' D)
5/ 1% 100
o/ 110 -85%
45 0 -845
™ 18 830
34 7 s
57 18 S8
20 U5 750
35 Hé ]
5 13 5
s 213 e
ur 84 -85
1ne 910 s
0 i lam

THE THIRD APPROXIMATION TO THE COMPRESSIBLE
FLOW ABOUT CIRCULAR CYLINDERS

In reference 2, the opinion is expressed by Hooker
that the terms involving (ryfeo)t, thus far neglected,
may become of considerable importance as the loeal
velocity of sound is approached on the ellipse. Hooker,
however, did not investigate the matter any further.
In reference 4, Poggi calculated these terms for the
compressible flow about & eircular cylinder, but a close
examination of his work shows that not all such terms
were taken into account. In what follows the terms
neglected by Poggi will be obtained and compared with
the already existing ones.
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The fundamental integral equation (1) may be written |

as follows:

A e 0 % 10 %%
_=%r _ 5 ON_ Ap O
¢ 1—2Xcos (6—38)- N

[1——-.3#(1 —§)+ ]sm 6—8)drds (22)

where 1/¢* has been replaced by a power series in
p{=n?{e)T) obtained from equation (3);1i. e.:

1_1 ¥—1 7
52—60 1——2—*#(1—1“?)-}' et :[

The method followed by Poggi was to gubstitute for
o, ¥4, 20d ? expressions pertaining to the incompressible
flow and thus obtain the following result: *

Ay (2 .
l—;;’— 3 sin 6— 36)u+ {y— 1)(120 i% sin 36
+§ sin 55);34— .. (23)

The velocity for the compressible flow at the surface of
the circular eylinder then becomes:

Dcomp__Yincomn Ao

v ' %
where Av/v, is given by equation (23).
Equation (24) thus represents the second approxima-
tion to the compressible flow, the first approximation
being the purely incompressible flow given by 9uc0mafto-
The third approximation nmy be obtained, at least in
principle, by substituting for ¢, vs, and #® in equation
(22) expressmns based on the second approximation.
Sueh expressmns, as far as the terms involving p are

concerned, are given in reference 3 and are as follows:

O (12 (13,2 5 5
e {(1—7\ cos 8 AL[( )\-l- 7\ 19 cos 0

(24)

-1-(%)\2—21:-)\‘) cos 38 |+. ..
=(142\?) gin 6+p[ 7\2—§>\‘+—11—2)\°) sin 6
+(—§w+%x) sin 36 |+ .
—--=<1 M) — M cos oaﬂ[ —x*——xﬂ-|-—x8)

+(_§7\2+ NM— )\“—{—%)\s) cos 26 M? cos 46]+. .

1 The corresponding terms involving (y—1) u? were obtained for elliptic ‘eylinders
end it was found that they reduce to those given In equation (23) for the circle. How-
aver, in reference 4 the coefficlents of sln & and sin §5 are given, respectively, as 13s0
and Mo owing to a siight error In the caleulations. Pilstoles! (reference 3) gives for the
coefBcient of sin & the value 43430 which, in view of the independent cheok of Poggl's
results by the author, is believed to be s misprint.
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where it is recalled that 7\=1-5-

When the foregoing expressions are substituted into
equation (22) and only the terms involving p and z* are
evaluated, it is found that, besides the terms given by
equation (23), the following ones involving u? must be
included:

37 25 .
4031116 24s1n36+8 sm56)

(25)
These terms seem to have been overlooked by both
Poggi and Pistolesi (reference 3).

The third approximation to the compressible flow at
the surface of the cireular eylinder then becomes:

f)
”‘—"';-:—"=2 sin a+(§ sin 5— = sin 35);;

25

3
+| (= sm6 54 s1x136+8 sin .;6)

+(7—1)<1£2§Osin 6——_% sin 35

-1% sin 56)];;’-}- . (26)
It is interesting to compare the magnitudes of the
various terms in equation (26) at the position of maxi-
mum velocity §==/2 and for the critical value p=0.1670
(obtained by means of equations (20) and (26)). Thus

(2 sin &) =2
=3

2 . 1.
”(5 sin 5—§ sin 36)‘_%—0.19-18

37 25 .
sin §—&77 sin 35+ gin 56) »=0.0653
40 24 8 =3

wy— 1)(120 sin §— ‘11(1) sin 3cS+8 sin 56) «=0.0067

Thus, it is seen that the terms involving u* do become
of importance with regard to the u terms as the local
velocity of sound is approached on the cirele and that
the main contribution is made by expression (25).

LANGLEY MEMORIAL AERONAUTICAL LLABORATORY,
NatroNaL Apvisory COMMITTEE FOR AERONAUTICS,
LaneLEy FigLp, VA., February 11, 1938.



APPENDIX

1
1—262M\2 cos 204 o*M

If 2 cos 24 is replaced by ¢**+¢2#, then

1 .1
1—2¢*\? cos 260-F-o* N (1—*N2e) (1 — 6®N2e~2H%)

Since, by the binomial theorem,

I. The Fourier Expansion of

H=

(1— o222 1= Z(a’)\’)fe”-"
and
JEIPE PR TS T E,—2ik8
(1— g®A%e24) E(u’)\’) (i
it follows that

=S S\ HE2G-EI8
5 Sinare
Let .. .
J+k=n
and therefore
j—k=0—2k, j=n—k
The double series then becomes
H=i i(azy)newu—ma
n=0 k=0

The terms of this series can be grouped in pairs such

that
1

nlﬂ

HesE ?4 (N cos W20 (1)

A=Q

even or odd and where the factor 2 is omitfed from the
term for which n is even and k== This term is

independent of ¢ and there is only one such term, not
two.
The series (1) may be written as

ﬂ ﬂ-l
=

H=>} 22 A, cos (n—2k)26

A=) kmQ
where
A=2(\)*

Expanding this series and rearranging the terms in the
form of a Fourier series,

H: =%§Ah +§ cos 2n9:EoA"+”
But

T
and

S tm=2( e =20

Therefore
1 [ e -
H=m[1 +2§(0’)\)2' Ccos 2n6] (2)
[I. The Integrals - )
2 sin (f— 6)
o 1—2\ cos (B—o)F N2

Ji= cos néds

and . o
sin (§—3 ]
Jz:ﬁ 1—2X\ cos (8—8)+ A2 sin nédo

If 2cos (6—3) is replaced by e!@ 9 g4~ *
then

1 1
1—2\ cos (—8)+ N {I—AODJ{1 78] ~
1 [ et )
TN D] _pgt® [ M—m—n}

-1 I D =51 _ S  m—i( +_1m—n]
=%iem (a—.s)l:.,.z.o ATe 2 N
Therefore .
JidiJ,= 1 f zr{mi ARgim D -8 __ S A HmtD -5 inep
21 0 = m=0 I
Replacing e* by =z,
R Y

m=0

— i 7\’“3”’""’”‘2""""""2)}(12

Since =
fror=pibem
it follows that m=n—1 and therefore
Jl_[_,k]‘z n)\""le‘“
Hence, for n=1,
Ji=—x\"1sin n§ and Jo==xA""1 cos n§ (3)

III. The Fourier Expansion of
1 .
(1—26222 cos 20+ *A%)2
In analogy to section I, replace 2 cos 26 by ‘¢¥-}-¢—2%,
Then

1
(1—252NF cos 20+ o*\9)?
_ 1
T (1= AN (1 — P\
According to the binomial theorem

(1 ot Nght) 5= 5 (j4 1) (2N

H2=

and

(1—o2N2g~20) —2=?§;0(k+ 1) (AN g2
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Therefore
FP= 3333 (1) (e 1) (67N o2
JmQx=0

Let
jt+k=n

j—k=n—2k, j=n—k

and therefore
Then
B =i}) g(n—-k—l—l) (k1) (a®N2)neritn—shre

The exponent of e is 2¢[(n—k)—k]0. If k and n—k are
interchanged, the exponent of ¢ changes sign but the
coefficient of ¢ remains unaltered. The terms can
therefore be grouped in pairs so that:

n n—l

H’——zf} 8 2, (— k1) (k+1) (*\)* cos (n—2k)28  (4)
where the factor 2 is omitted from the term for which

. n
n is even and £=3-

&

The series (4) may be written as

n,n-1
2 2

=2, ?_‘, A,z cos (n—2k)20
Am} L=0
where ; .
App=2n—k+1)(k+1) (*N)"
Expanding this series and rearrangmg the terms in the
form of a Fourier series,

=§Z% Axk_k—[—?;_,‘l cos 2né g Apigrx
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But
1e - o og Lot
EE;JA"":Z%%-F 1) (0")\) "("—1__0,4_)\4):
and
> Autara=2(N) D30 D (1) (04
_ M1 —(n—1)c*\
—2<°2h’) (1—-6"”‘)8
Therefore
= (1—j4x4)= (11 0t0 +2?—‘_,:l[(n+1)
— (n—1)AN] (*ND)" cos 2ne} 5)
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